Finding the basis of the intersection of a subspace and spanFind a basis for the subspace sum and then...
How can my powered armor quickly replace its ceramic plates?
How to avoid being sexist when trying to employ someone to function in a very sexist environment?
Why would space fleets be aligned?
Can placing a counter on a creature after it has been assigned as an attacker remove it from combat
Better VM Ubuntu on Windows 10 or VM Windows 10 on Ubuntu?
Finding a mistake using Mayer-Vietoris
Finding the basis of the intersection of a subspace and span
What's a good word to describe a public place that looks like it wouldn't be rough?
Am I a Rude Number?
Why are the books in the Game of Thrones citadel library shelved spine inwards?
How do you funnel food off a cutting board?
Why zero tolerance on nudity in space?
Roman Numerals equation 1
Why is working on the same position for more than 15 years not a red flag?
How would an AI self awareness kill switch work?
How can I get my players to come to the game session after agreeing to a date?
Pronunciation of umlaut vowels in the history of German
Eww, those bytes are gross
Is boss over stepping boundary/micromanaging?
Does paint affect EMI of enclosure
Porting Linux to another platform requirements
Is my visa status for all destinations in a flight with connections checked in the beginning or before each flight?
Math Saturation Symbol
awk + sum all numbers
Finding the basis of the intersection of a subspace and span
Find a basis for the subspace sum and then calculate its dimension.Find bases for the subspaces $U_1, U_2, U_1 cap U_2, U_1 + U_2$Basis of a subspace in $R^4$Basis of a Subspace Linear AlgebraFind basis of the following subspaceFinding a Basis for the 5x5 solutions space WFind a basis of a subspace $S={(x_1,x_2,x_3,x_4,x_5)inmathbb{R^5}|x_1=x_3=x_5,x_2-x_4=2x_1-x_3}$Solution subspace of linear system and its basisFind a basis for the subspace given two equationsFinding a basis and the dimension of linear subspaces
$begingroup$
I need help with determining the basis of $U_1 cap U_2$ in the following problem:
Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$ and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$.
If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.
My attempt:
I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$, but I'm not sure what the procedure is from there.
linear-algebra
$endgroup$
add a comment |
$begingroup$
I need help with determining the basis of $U_1 cap U_2$ in the following problem:
Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$ and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$.
If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.
My attempt:
I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$, but I'm not sure what the procedure is from there.
linear-algebra
$endgroup$
$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago
add a comment |
$begingroup$
I need help with determining the basis of $U_1 cap U_2$ in the following problem:
Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$ and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$.
If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.
My attempt:
I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$, but I'm not sure what the procedure is from there.
linear-algebra
$endgroup$
I need help with determining the basis of $U_1 cap U_2$ in the following problem:
Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$ and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$.
If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.
My attempt:
I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$, but I'm not sure what the procedure is from there.
linear-algebra
linear-algebra
edited 2 hours ago
bb411
asked 3 hours ago
bb411bb411
15119
15119
$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago
add a comment |
$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago
$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago
$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?
$endgroup$
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
1
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
add a comment |
$begingroup$
$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$
$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$
$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$
$endgroup$
add a comment |
$begingroup$
If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
$$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
We face,
$$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
Ok, so,
$$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
$$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
$$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$
Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
$$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3130546%2ffinding-the-basis-of-the-intersection-of-a-subspace-and-span%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?
$endgroup$
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
1
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
add a comment |
$begingroup$
The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?
$endgroup$
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
1
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
add a comment |
$begingroup$
The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?
$endgroup$
The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?
answered 2 hours ago
José Carlos SantosJosé Carlos Santos
164k22131234
164k22131234
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
1
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
add a comment |
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
1
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
$begingroup$
How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
$endgroup$
– bb411
1 hour ago
1
1
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
$begingroup$
What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
$endgroup$
– José Carlos Santos
1 hour ago
add a comment |
$begingroup$
$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$
$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$
$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$
$endgroup$
add a comment |
$begingroup$
$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$
$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$
$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$
$endgroup$
add a comment |
$begingroup$
$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$
$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$
$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$
$endgroup$
$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$
$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$
$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$
answered 2 hours ago
Doug MDoug M
45.3k31954
45.3k31954
add a comment |
add a comment |
$begingroup$
If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
$$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
We face,
$$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
Ok, so,
$$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
$$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
$$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$
Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
$$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$
$endgroup$
add a comment |
$begingroup$
If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
$$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
We face,
$$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
Ok, so,
$$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
$$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
$$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$
Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
$$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$
$endgroup$
add a comment |
$begingroup$
If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
$$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
We face,
$$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
Ok, so,
$$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
$$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
$$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$
Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
$$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$
$endgroup$
If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
$$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
We face,
$$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
Ok, so,
$$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
$$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
$$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$
Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
$$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$
answered 1 hour ago
James S. CookJames S. Cook
13.2k22872
13.2k22872
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3130546%2ffinding-the-basis-of-the-intersection-of-a-subspace-and-span%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago