Finding the basis of the intersection of a subspace and spanFind a basis for the subspace sum and then...

How can my powered armor quickly replace its ceramic plates?

How to avoid being sexist when trying to employ someone to function in a very sexist environment?

Why would space fleets be aligned?

Can placing a counter on a creature after it has been assigned as an attacker remove it from combat

Better VM Ubuntu on Windows 10 or VM Windows 10 on Ubuntu?

Finding a mistake using Mayer-Vietoris

Finding the basis of the intersection of a subspace and span

What's a good word to describe a public place that looks like it wouldn't be rough?

Am I a Rude Number?

Why are the books in the Game of Thrones citadel library shelved spine inwards?

How do you funnel food off a cutting board?

Why zero tolerance on nudity in space?

Roman Numerals equation 1

Why is working on the same position for more than 15 years not a red flag?

How would an AI self awareness kill switch work?

How can I get my players to come to the game session after agreeing to a date?

Pronunciation of umlaut vowels in the history of German

Eww, those bytes are gross

Is boss over stepping boundary/micromanaging?

Does paint affect EMI of enclosure

Porting Linux to another platform requirements

Is my visa status for all destinations in a flight with connections checked in the beginning or before each flight?

Math Saturation Symbol

awk + sum all numbers



Finding the basis of the intersection of a subspace and span


Find a basis for the subspace sum and then calculate its dimension.Find bases for the subspaces $U_1, U_2, U_1 cap U_2, U_1 + U_2$Basis of a subspace in $R^4$Basis of a Subspace Linear AlgebraFind basis of the following subspaceFinding a Basis for the 5x5 solutions space WFind a basis of a subspace $S={(x_1,x_2,x_3,x_4,x_5)inmathbb{R^5}|x_1=x_3=x_5,x_2-x_4=2x_1-x_3}$Solution subspace of linear system and its basisFind a basis for the subspace given two equationsFinding a basis and the dimension of linear subspaces













3












$begingroup$


I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    2 hours ago
















3












$begingroup$


I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    2 hours ago














3












3








3





$begingroup$


I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.










share|cite|improve this question











$endgroup$




I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago







bb411

















asked 3 hours ago









bb411bb411

15119




15119












  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    2 hours ago


















  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    2 hours ago
















$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago




$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
2 hours ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
    $endgroup$
    – bb411
    1 hour ago








  • 1




    $begingroup$
    What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
    $endgroup$
    – José Carlos Santos
    1 hour ago





















2












$begingroup$

$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
    $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
    We face,
    $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
    Ok, so,
    $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
    Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
    $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
    If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
    $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
    left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

    Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
    $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3130546%2ffinding-the-basis-of-the-intersection-of-a-subspace-and-span%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        1 hour ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        1 hour ago


















      4












      $begingroup$

      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        1 hour ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        1 hour ago
















      4












      4








      4





      $begingroup$

      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






      share|cite|improve this answer









      $endgroup$



      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 2 hours ago









      José Carlos SantosJosé Carlos Santos

      164k22131234




      164k22131234












      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        1 hour ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        1 hour ago




















      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        1 hour ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        1 hour ago


















      $begingroup$
      How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
      $endgroup$
      – bb411
      1 hour ago






      $begingroup$
      How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
      $endgroup$
      – bb411
      1 hour ago






      1




      1




      $begingroup$
      What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
      $endgroup$
      – José Carlos Santos
      1 hour ago






      $begingroup$
      What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
      $endgroup$
      – José Carlos Santos
      1 hour ago













      2












      $begingroup$

      $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



      $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
      begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



      $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



        $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
        begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



        $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



          $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
          begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



          $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






          share|cite|improve this answer









          $endgroup$



          $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



          $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
          begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



          $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Doug MDoug M

          45.3k31954




          45.3k31954























              0












              $begingroup$

              If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
              $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
              We face,
              $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
              Ok, so,
              $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
              Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
              $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
              If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
              $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
              left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

              Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
              $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
                $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
                We face,
                $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
                Ok, so,
                $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
                Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
                $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
                If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
                $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
                left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

                Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
                $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
                  $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
                  We face,
                  $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
                  Ok, so,
                  $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
                  Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
                  $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
                  If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
                  $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
                  left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

                  Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
                  $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






                  share|cite|improve this answer









                  $endgroup$



                  If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
                  $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
                  We face,
                  $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
                  Ok, so,
                  $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
                  Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
                  $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
                  If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
                  $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
                  left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

                  Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
                  $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 1 hour ago









                  James S. CookJames S. Cook

                  13.2k22872




                  13.2k22872






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3130546%2ffinding-the-basis-of-the-intersection-of-a-subspace-and-span%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Benedict Cumberbatch Contingut Inicis Debut professional Premis Filmografia bàsica Premis i...

                      Monticle de plataforma Contingut Est de Nord Amèrica Interpretacions Altres cultures Vegeu...

                      Escacs Janus Enllaços externs Menú de navegacióEscacs JanusJanusschachBrainKing.comChessV