Calculate the number of points of an elliptic curve in medium Weierstrass form over finite fieldProving the...

Removing disk while game is suspended

A Missing Symbol for This Logo

What is a good reason for every spaceship to carry a weapon on board?

Is there any risk in sharing info about technologies and products we use with a supplier?

Dilemma of explaining to interviewer that he is the reason for declining second interview

Making him into a bully (how to show mild violence)

What is the most fuel efficient way out of the Solar System?

Can you tell from a blurry photo if focus was too close or too far?

kill -0 <PID> は何をするのでしょうか?

What is the purpose of easy combat scenarios that don't need resource expenditure?

What is the difference between rolling more dice versus fewer dice?

Cookies - Should the toggles be on?

The use of the spellings -zz- vs. -z-

Do authors have to be politically correct in article-writing?

SET NOCOUNT Error in handling SQL call after upgrade

Increment each digit in a number to form a new number

Graph with overlapping labels

How to deal with an incendiary email that was recalled

Has any human ever had the choice to leave Earth permanently?

Why is working on the same position for more than 15 years not a red flag?

use of 4/2 chord more compelling than root position?

Non-Cancer terminal illness that can affect young (age 10-13) girls?

It took me a lot of time to make this, pls like. (YouTube Comments #1)

How should I handle players who ignore the session zero agreement?



Calculate the number of points of an elliptic curve in medium Weierstrass form over finite field


Proving the condition for two elliptic curves given in Weierstrass form to be isomorphicEndomorphism Ring of an Elliptic Curve over Finite FieldComputation of the 2-torsion group of an elliptic curveHasse's Theorem for Elliptic Curves over Finite Fields + proof clarificationTopics in elliptic curves over finite fieldsElliptic curve $y^2= x^3 + x$ over the finite field $mathbb{F}_p$ with $p geq 3$.Addition of points on elliptic curves over a finite fieldAdding points on an elliptic curveDirect sum of two points on an elliptic curveWeierstrass Form of an Elliptic Curve













5












$begingroup$


Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.










share|cite|improve this question









$endgroup$

















    5












    $begingroup$


    Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.










    share|cite|improve this question









    $endgroup$















      5












      5








      5





      $begingroup$


      Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.










      share|cite|improve this question









      $endgroup$




      Let $E$ be the elliptic curve over $mathbb{F}_3$ in medium Weierstrass form $E:y^2=x^3+x^2+x+1$. How to compute the number of points $|E(mathbb{F}_{3^k})|$? I read that there are some formulas for computing number of points for short Weierstrass form by Frobenius endomorphism. But they don't work in this case.







      number-theory elliptic-curves






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      NickyNicky

      736




      736






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



          magma code



               F := FiniteField(3); A<x,y> := AffineSpace(F,2);
          C := Curve(A,y^2-x^3-x^2-x-1);
          t :=3+1- #Points(ProjectiveClosure(C));
          P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

          for k in [2..10] do
          Ck := BaseChange(C,FiniteField(3^k));
          Ek := #Points(ProjectiveClosure(Ck));
          [Ek,3^k+1-a^k-aa^k];
          end for;


          To obtain the minimal polynomial of endomorphisms :



          Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
          $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            This is, indeed, easy after you have calculated the number of points over the prime field. It is straightforward to list them
            $$
            E(Bbb{F}_3)={(0,1),(0,-1),(1,1),(1,-1),(-1,0),infty}.
            $$

            In other words $|E(Bbb{F}_3)|=6.$ This piece of information gives us the complex numbers
            $alpha,overline{alpha}$
            (see reuns's post for their interpretation as eigenvalues of Frobenius on the Tate module) as they are known to safisfy the equations $|alpha|^2=3$ and
            $$
            alpha+overline{alpha}=3+1-|E(Bbb{F}_3)|=-2.
            $$

            The real part of $alpha$ is thus equal to $-1$, so $alpha=-1pm isqrt2$.



            The formula for the number of rational poinst on the extension field then reads
            $$
            |E(Bbb{F}_{3^k})|=3^k+1-alpha^k-overline{alpha}^k=3^k+1-2operatorname{Re}(-1+isqrt2)^k.
            $$



            For example, when $k=2$, $alpha^2=(-1+isqrt2)^2=-1-2isqrt2$
            implying that $|E(Bbb{F}_9)|=9+1+2=12$. This passes the litmus test of being divisible by $|E(Bbb{F}_3)|$ (Lagrange's theorem from elementary group theory), possibly adding to our confidence in the correctness of the result.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3129575%2fcalculate-the-number-of-points-of-an-elliptic-curve-in-medium-weierstrass-form-o%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



              magma code



                   F := FiniteField(3); A<x,y> := AffineSpace(F,2);
              C := Curve(A,y^2-x^3-x^2-x-1);
              t :=3+1- #Points(ProjectiveClosure(C));
              P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

              for k in [2..10] do
              Ck := BaseChange(C,FiniteField(3^k));
              Ek := #Points(ProjectiveClosure(Ck));
              [Ek,3^k+1-a^k-aa^k];
              end for;


              To obtain the minimal polynomial of endomorphisms :



              Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
              $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






              share|cite|improve this answer











              $endgroup$


















                4












                $begingroup$

                Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



                magma code



                     F := FiniteField(3); A<x,y> := AffineSpace(F,2);
                C := Curve(A,y^2-x^3-x^2-x-1);
                t :=3+1- #Points(ProjectiveClosure(C));
                P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

                for k in [2..10] do
                Ck := BaseChange(C,FiniteField(3^k));
                Ek := #Points(ProjectiveClosure(Ck));
                [Ek,3^k+1-a^k-aa^k];
                end for;


                To obtain the minimal polynomial of endomorphisms :



                Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
                $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






                share|cite|improve this answer











                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



                  magma code



                       F := FiniteField(3); A<x,y> := AffineSpace(F,2);
                  C := Curve(A,y^2-x^3-x^2-x-1);
                  t :=3+1- #Points(ProjectiveClosure(C));
                  P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

                  for k in [2..10] do
                  Ck := BaseChange(C,FiniteField(3^k));
                  Ek := #Points(ProjectiveClosure(Ck));
                  [Ek,3^k+1-a^k-aa^k];
                  end for;


                  To obtain the minimal polynomial of endomorphisms :



                  Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
                  $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.






                  share|cite|improve this answer











                  $endgroup$



                  Let $phi^k(x,y)= (x^{3^k},y^{3^k})$ then $#E(mathbb{F}_{3^k}) =deg_s(phi^k-1)$. Is the endomorphism $phi^k-1$ separable ? Yes because inserapable endomorphisms are of the form $rho circ phi$. Then $$deg_s(phi^k-1) = deg(phi^k-1)=((phi^*)^k-1)(phi^k-1)\= (phi^*phi)^k+1-(phi^*)^k-phi^k = 3^k+1-alpha^k-(alpha^*)^k$$ where $phi^*$ is the dual isogeny such that $phi^* phi = deg(phi) = 3$ and $phi+phi^* = t = 3+1-#E(mathbb{F}_{3})$ and $alpha$ is the root of the minimal polynomial $X^2-t X + 3 = 0$ of the Frobenius



                  magma code



                       F := FiniteField(3); A<x,y> := AffineSpace(F,2);
                  C := Curve(A,y^2-x^3-x^2-x-1);
                  t :=3+1- #Points(ProjectiveClosure(C));
                  P<z> := PolynomialRing(Integers()); K<a> := NumberField(z^2-t*z+3); aa := Norm(a)/a;

                  for k in [2..10] do
                  Ck := BaseChange(C,FiniteField(3^k));
                  Ek := #Points(ProjectiveClosure(Ck));
                  [Ek,3^k+1-a^k-aa^k];
                  end for;


                  To obtain the minimal polynomial of endomorphisms :



                  Write that $E(overline{mathbb{F}_3}) $ is a subgroup of $mathbb{Q}/mathbb{Z}times mathbb{Q}/mathbb{Z}$ so any group homomorphism acts as a matrix
                  $A=pmatrix{a & b \c & d} in M_2(widehat{mathbb{Z}})$ (matrix of profinite integers). Then the dual homomorphism is $A^*=pmatrix{d & -b \-c & a}$ so that $A^* A = pmatrix{ad-bc& 0 \ 0 & ad-bc}$ and $A + A^* = pmatrix{a+d & 0 \0 & a+d}$, so they both act as direct multiplication by an element in $widehat{mathbb{Z}}$. If $A$ is an endomorphism (defined by polynomial equations) then so are $A^*,A + A^*,A^*A$ so the latter must act as multiplication by elements in $mathbb{Z}$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 1 hour ago

























                  answered 4 hours ago









                  reunsreuns

                  20.7k21148




                  20.7k21148























                      0












                      $begingroup$

                      This is, indeed, easy after you have calculated the number of points over the prime field. It is straightforward to list them
                      $$
                      E(Bbb{F}_3)={(0,1),(0,-1),(1,1),(1,-1),(-1,0),infty}.
                      $$

                      In other words $|E(Bbb{F}_3)|=6.$ This piece of information gives us the complex numbers
                      $alpha,overline{alpha}$
                      (see reuns's post for their interpretation as eigenvalues of Frobenius on the Tate module) as they are known to safisfy the equations $|alpha|^2=3$ and
                      $$
                      alpha+overline{alpha}=3+1-|E(Bbb{F}_3)|=-2.
                      $$

                      The real part of $alpha$ is thus equal to $-1$, so $alpha=-1pm isqrt2$.



                      The formula for the number of rational poinst on the extension field then reads
                      $$
                      |E(Bbb{F}_{3^k})|=3^k+1-alpha^k-overline{alpha}^k=3^k+1-2operatorname{Re}(-1+isqrt2)^k.
                      $$



                      For example, when $k=2$, $alpha^2=(-1+isqrt2)^2=-1-2isqrt2$
                      implying that $|E(Bbb{F}_9)|=9+1+2=12$. This passes the litmus test of being divisible by $|E(Bbb{F}_3)|$ (Lagrange's theorem from elementary group theory), possibly adding to our confidence in the correctness of the result.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        This is, indeed, easy after you have calculated the number of points over the prime field. It is straightforward to list them
                        $$
                        E(Bbb{F}_3)={(0,1),(0,-1),(1,1),(1,-1),(-1,0),infty}.
                        $$

                        In other words $|E(Bbb{F}_3)|=6.$ This piece of information gives us the complex numbers
                        $alpha,overline{alpha}$
                        (see reuns's post for their interpretation as eigenvalues of Frobenius on the Tate module) as they are known to safisfy the equations $|alpha|^2=3$ and
                        $$
                        alpha+overline{alpha}=3+1-|E(Bbb{F}_3)|=-2.
                        $$

                        The real part of $alpha$ is thus equal to $-1$, so $alpha=-1pm isqrt2$.



                        The formula for the number of rational poinst on the extension field then reads
                        $$
                        |E(Bbb{F}_{3^k})|=3^k+1-alpha^k-overline{alpha}^k=3^k+1-2operatorname{Re}(-1+isqrt2)^k.
                        $$



                        For example, when $k=2$, $alpha^2=(-1+isqrt2)^2=-1-2isqrt2$
                        implying that $|E(Bbb{F}_9)|=9+1+2=12$. This passes the litmus test of being divisible by $|E(Bbb{F}_3)|$ (Lagrange's theorem from elementary group theory), possibly adding to our confidence in the correctness of the result.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          This is, indeed, easy after you have calculated the number of points over the prime field. It is straightforward to list them
                          $$
                          E(Bbb{F}_3)={(0,1),(0,-1),(1,1),(1,-1),(-1,0),infty}.
                          $$

                          In other words $|E(Bbb{F}_3)|=6.$ This piece of information gives us the complex numbers
                          $alpha,overline{alpha}$
                          (see reuns's post for their interpretation as eigenvalues of Frobenius on the Tate module) as they are known to safisfy the equations $|alpha|^2=3$ and
                          $$
                          alpha+overline{alpha}=3+1-|E(Bbb{F}_3)|=-2.
                          $$

                          The real part of $alpha$ is thus equal to $-1$, so $alpha=-1pm isqrt2$.



                          The formula for the number of rational poinst on the extension field then reads
                          $$
                          |E(Bbb{F}_{3^k})|=3^k+1-alpha^k-overline{alpha}^k=3^k+1-2operatorname{Re}(-1+isqrt2)^k.
                          $$



                          For example, when $k=2$, $alpha^2=(-1+isqrt2)^2=-1-2isqrt2$
                          implying that $|E(Bbb{F}_9)|=9+1+2=12$. This passes the litmus test of being divisible by $|E(Bbb{F}_3)|$ (Lagrange's theorem from elementary group theory), possibly adding to our confidence in the correctness of the result.






                          share|cite|improve this answer









                          $endgroup$



                          This is, indeed, easy after you have calculated the number of points over the prime field. It is straightforward to list them
                          $$
                          E(Bbb{F}_3)={(0,1),(0,-1),(1,1),(1,-1),(-1,0),infty}.
                          $$

                          In other words $|E(Bbb{F}_3)|=6.$ This piece of information gives us the complex numbers
                          $alpha,overline{alpha}$
                          (see reuns's post for their interpretation as eigenvalues of Frobenius on the Tate module) as they are known to safisfy the equations $|alpha|^2=3$ and
                          $$
                          alpha+overline{alpha}=3+1-|E(Bbb{F}_3)|=-2.
                          $$

                          The real part of $alpha$ is thus equal to $-1$, so $alpha=-1pm isqrt2$.



                          The formula for the number of rational poinst on the extension field then reads
                          $$
                          |E(Bbb{F}_{3^k})|=3^k+1-alpha^k-overline{alpha}^k=3^k+1-2operatorname{Re}(-1+isqrt2)^k.
                          $$



                          For example, when $k=2$, $alpha^2=(-1+isqrt2)^2=-1-2isqrt2$
                          implying that $|E(Bbb{F}_9)|=9+1+2=12$. This passes the litmus test of being divisible by $|E(Bbb{F}_3)|$ (Lagrange's theorem from elementary group theory), possibly adding to our confidence in the correctness of the result.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 42 mins ago









                          Jyrki LahtonenJyrki Lahtonen

                          109k13170377




                          109k13170377






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3129575%2fcalculate-the-number-of-points-of-an-elliptic-curve-in-medium-weierstrass-form-o%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Benedict Cumberbatch Contingut Inicis Debut professional Premis Filmografia bàsica Premis i...

                              Monticle de plataforma Contingut Est de Nord Amèrica Interpretacions Altres cultures Vegeu...

                              Escacs Janus Enllaços externs Menú de navegacióEscacs JanusJanusschachBrainKing.comChessV