Question about integral of an odd functionHow can I find the integral of this function using trig...
Avoid page break between paragraphs
Line of Bones to Travel and Conform to Curve (Like Train on a Track, Snake...)
Does dispel magic end a master's control over their undead?
Cat is tipping over bed-side lamps during the night
Crontab: Ubuntu running script (noob)
If I delete my router's history can my ISP still provide it to my parents?
Python Pandas - difference between 'loc' and 'where'?
Why are all my replica super soldiers young adults or old teenagers?
Why did the villain in the first Men in Black movie care about Earth's Cockroaches?
How do you funnel food off a cutting board?
Play Zip, Zap, Zop
Consequences of lack of rigour
Is it a fallacy if someone claims they need an explanation for every word of your argument to the point where they don't understand common terms?
Why exactly do action photographers need high fps burst cameras?
What is a good reason for every spaceship to carry a weapon on board?
"on its way" vs. "in its way"
General past possibility with 'could'
Why publish a research paper when a blog post or a lecture slide can have more citation count than a journal paper?
Has any human ever had the choice to leave Earth permanently?
Is there a lava-breathing lizard creature (that could be worshipped by a cult) in 5e?
What is the wife of a henpecked husband called?
Potential client has a problematic employee I can't work with
GRASS not working with QGIS 3.6
Why is it that Bernie Sanders is always called a "socialist"?
Question about integral of an odd function
How can I find the integral of this function using trig substitution?Why does $sin{alpha}cdot isin{alpha x}$ disappear from this integral?Using Polar Coordinates to Calculate Double IntegralQuestion concerning the domain of polar coordinate.Evaluate $int_0^{infty}frac{e^{-x}-e^{-2x}}{x}dx$ using a double integralQuestion about the limits of definite integralsQuestion about a substitution in an integralDoubt about an improper multiple integralIntegrate $int_0^1 sin^{-1}{frac{x^2}{1+x^2}}dx$Studying the convergence of the integral $int_0^pi frac{ln(sin(x))}{x}dx$
$begingroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
$endgroup$
add a comment |
$begingroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
$endgroup$
add a comment |
$begingroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
$endgroup$
I am studying something and encountered this:
"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that
$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.
If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.
calculus
calculus
asked 7 hours ago
manifoldedmanifolded
3537
3537
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128566%2fquestion-about-integral-of-an-odd-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
add a comment |
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
add a comment |
$begingroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
$endgroup$
When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.
answered 7 hours ago
Kavi Rama MurthyKavi Rama Murthy
63.2k42362
63.2k42362
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
add a comment |
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
1
1
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
$begingroup$
Correct! Thanks.
$endgroup$
– manifolded
7 hours ago
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
$endgroup$
$$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
&Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
&Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
&Rightarrow R(theta ,T)=-R(|theta|,T)\
end{align}$$
answered 7 hours ago
s0ulr3aper07s0ulr3aper07
541111
541111
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128566%2fquestion-about-integral-of-an-odd-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown