Question about integral of an odd functionHow can I find the integral of this function using trig...

Avoid page break between paragraphs

Line of Bones to Travel and Conform to Curve (Like Train on a Track, Snake...)

Does dispel magic end a master's control over their undead?

Cat is tipping over bed-side lamps during the night

Crontab: Ubuntu running script (noob)

If I delete my router's history can my ISP still provide it to my parents?

Python Pandas - difference between 'loc' and 'where'?

Why are all my replica super soldiers young adults or old teenagers?

Why did the villain in the first Men in Black movie care about Earth's Cockroaches?

How do you funnel food off a cutting board?

Play Zip, Zap, Zop

Consequences of lack of rigour

Is it a fallacy if someone claims they need an explanation for every word of your argument to the point where they don't understand common terms?

Why exactly do action photographers need high fps burst cameras?

What is a good reason for every spaceship to carry a weapon on board?

"on its way" vs. "in its way"

General past possibility with 'could'

Why publish a research paper when a blog post or a lecture slide can have more citation count than a journal paper?

Has any human ever had the choice to leave Earth permanently?

Is there a lava-breathing lizard creature (that could be worshipped by a cult) in 5e?

What is the wife of a henpecked husband called?

Potential client has a problematic employee I can't work with

GRASS not working with QGIS 3.6

Why is it that Bernie Sanders is always called a "socialist"?



Question about integral of an odd function


How can I find the integral of this function using trig substitution?Why does $sin{alpha}cdot isin{alpha x}$ disappear from this integral?Using Polar Coordinates to Calculate Double IntegralQuestion concerning the domain of polar coordinate.Evaluate $int_0^{infty}frac{e^{-x}-e^{-2x}}{x}dx$ using a double integralQuestion about the limits of definite integralsQuestion about a substitution in an integralDoubt about an improper multiple integralIntegrate $int_0^1 sin^{-1}{frac{x^2}{1+x^2}}dx$Studying the convergence of the integral $int_0^pi frac{ln(sin(x))}{x}dx$













3












$begingroup$


I am studying something and encountered this:

"
Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that



$R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.



If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    I am studying something and encountered this:

    "
    Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that



    $R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.



    If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      I am studying something and encountered this:

      "
      Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that



      $R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.



      If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.










      share|cite|improve this question









      $endgroup$




      I am studying something and encountered this:

      "
      Let $R(theta,T) = int_{-T}^{T} frac{(sin theta t)}{t}dt, S(T) = int_0^Tfrac{(sin x)}{x}dx$, then for $theta > 0$ and changing variables $t=x/theta $ shows that



      $R(theta,T)=2int_0^{Ttheta}frac{sin x}{x}dx = 2S(Ttheta)$ while for $theta<0$, $R(theta,T) = -R(|theta|,T)$" which I don't understand.



      If $theta<0$, then $R(theta,T)=2int_{-T|theta|}^{0}frac{sin x}{x}dx =2int_0^{T|theta|}frac{sin x}{x}dx = R(|theta|,T)$ as $frac{sin x}{x}$ is an even function, right? I am missing something simple here, thanks and appreciate an explanation.







      calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 7 hours ago









      manifoldedmanifolded

      3537




      3537






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Correct! Thanks.
            $endgroup$
            – manifolded
            7 hours ago



















          2












          $begingroup$

          $$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
          &Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
          &Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
          &Rightarrow R(theta ,T)=-R(|theta|,T)\
          end{align}$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128566%2fquestion-about-integral-of-an-odd-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Correct! Thanks.
              $endgroup$
              – manifolded
              7 hours ago
















            4












            $begingroup$

            When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Correct! Thanks.
              $endgroup$
              – manifolded
              7 hours ago














            4












            4








            4





            $begingroup$

            When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.






            share|cite|improve this answer









            $endgroup$



            When $t=-T$ we get $x=ttheta =-Ttheta =T|theta|$ and not $-T|theta|$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 7 hours ago









            Kavi Rama MurthyKavi Rama Murthy

            63.2k42362




            63.2k42362








            • 1




              $begingroup$
              Correct! Thanks.
              $endgroup$
              – manifolded
              7 hours ago














            • 1




              $begingroup$
              Correct! Thanks.
              $endgroup$
              – manifolded
              7 hours ago








            1




            1




            $begingroup$
            Correct! Thanks.
            $endgroup$
            – manifolded
            7 hours ago




            $begingroup$
            Correct! Thanks.
            $endgroup$
            – manifolded
            7 hours ago











            2












            $begingroup$

            $$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
            &Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
            &Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
            &Rightarrow R(theta ,T)=-R(|theta|,T)\
            end{align}$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              $$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
              &Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
              &Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
              &Rightarrow R(theta ,T)=-R(|theta|,T)\
              end{align}$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                $$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
                &Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
                &Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
                &Rightarrow R(theta ,T)=-R(|theta|,T)\
                end{align}$$






                share|cite|improve this answer









                $endgroup$



                $$begin{align}theta <0 & Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (theta t)}{t}dt\
                &Rightarrow R(theta ,T)=int_{-T}^Tfrac{sin (-|theta| t)}{t}dt\
                &Rightarrow R(theta ,T)=-int_{-T}^Tfrac{sin (|theta| t)}{t}dt [because sin(-x)=-sin (x)big]\
                &Rightarrow R(theta ,T)=-R(|theta|,T)\
                end{align}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 7 hours ago









                s0ulr3aper07s0ulr3aper07

                541111




                541111






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128566%2fquestion-about-integral-of-an-odd-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Benedict Cumberbatch Contingut Inicis Debut professional Premis Filmografia bàsica Premis i...

                    Monticle de plataforma Contingut Est de Nord Amèrica Interpretacions Altres cultures Vegeu...

                    Escacs Janus Enllaços externs Menú de navegacióEscacs JanusJanusschachBrainKing.comChessV