How do I draw the dashed lines as shown in this figureHow can I put a coloured outline around fraction...

Is it a fallacy if someone claims they need an explanation for every word of your argument to the point where they don't understand common terms?

What to look for when criticizing poetry?

Ellipses aligned on the same boundary point

Can I announce prefix 161.117.25.0/24 even though I don't have all of /24 IPs?

Is using an 'empty' metaphor considered bad style?

Which communication protocol is used in AdLib sound card?

How to make ice magic work from a scientific point of view?

Hilchos Shabbos English Sefer

Why does photorec keep finding files after I have filled the disk free space as root?

Do "fields" always combine by addition?

Do authors have to be politically correct in article-writing?

Early credit roll before the end of the film

Non-Cancer terminal illness that can affect young (age 10-13) girls?

Cookies - Should the toggles be on?

Why zero tolerance on nudity in space?

Why was Lupin comfortable with saying Voldemort's name?

Why did Luke use his left hand to shoot?

"on its way" vs. "in its way"

Why are all my replica super soldiers young adults or old teenagers?

Is there a lava-breathing lizard creature (that could be worshipped by a cult) in 5e?

Am I a Rude Number?

Cat is tipping over bed-side lamps during the night

Does Skippy chunky peanut butter contain trans fat?

Can you tell from a blurry photo if focus was too close or too far?



How do I draw the dashed lines as shown in this figure


How can I put a coloured outline around fraction lines?Rotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?Numerical conditional within tikz keys?TikZ/ERD: node (=Entity) label on the insideWhy do I get an extra white page before my TikZ picture?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to draw a square and its diagonals with arrows?













4















I want to draw the dashed lines as shown in the below figure:



enter image description here



I have achieved the following so far:



enter image description here



MWE:



documentclass{article}
usepackage{tikz}
usepackage{xcolor}
usetikzlibrary{decorations.pathmorphing}
tikzset{zigzag/.style={decorate,decoration=zigzag}}
begin{document}
begin{tikzpicture}
coordinate (c) at (0,-2);
coordinate (d) at (4,-2);
coordinate (e) at (2,-4);
draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
draw[thick] (a) -- (c);
draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
end{tikzpicture}
end{document}









share|improve this question





























    4















    I want to draw the dashed lines as shown in the below figure:



    enter image description here



    I have achieved the following so far:



    enter image description here



    MWE:



    documentclass{article}
    usepackage{tikz}
    usepackage{xcolor}
    usetikzlibrary{decorations.pathmorphing}
    tikzset{zigzag/.style={decorate,decoration=zigzag}}
    begin{document}
    begin{tikzpicture}
    coordinate (c) at (0,-2);
    coordinate (d) at (4,-2);
    coordinate (e) at (2,-4);
    draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
    draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
    draw[thick] (a) -- (c);
    draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
    end{tikzpicture}
    end{document}









    share|improve this question



























      4












      4








      4








      I want to draw the dashed lines as shown in the below figure:



      enter image description here



      I have achieved the following so far:



      enter image description here



      MWE:



      documentclass{article}
      usepackage{tikz}
      usepackage{xcolor}
      usetikzlibrary{decorations.pathmorphing}
      tikzset{zigzag/.style={decorate,decoration=zigzag}}
      begin{document}
      begin{tikzpicture}
      coordinate (c) at (0,-2);
      coordinate (d) at (4,-2);
      coordinate (e) at (2,-4);
      draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
      draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
      draw[thick] (a) -- (c);
      draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
      end{tikzpicture}
      end{document}









      share|improve this question
















      I want to draw the dashed lines as shown in the below figure:



      enter image description here



      I have achieved the following so far:



      enter image description here



      MWE:



      documentclass{article}
      usepackage{tikz}
      usepackage{xcolor}
      usetikzlibrary{decorations.pathmorphing}
      tikzset{zigzag/.style={decorate,decoration=zigzag}}
      begin{document}
      begin{tikzpicture}
      coordinate (c) at (0,-2);
      coordinate (d) at (4,-2);
      coordinate (e) at (2,-4);
      draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
      draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
      draw[thick] (a) -- (c);
      draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
      end{tikzpicture}
      end{document}






      tikz-pgf






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 3 hours ago









      JouleV

      4,2801938




      4,2801938










      asked 5 hours ago









      subham sonisubham soni

      3,98882981




      3,98882981






















          3 Answers
          3






          active

          oldest

          votes


















          4














          The task is not so difficult with decorations.markings:



          documentclass[tikz,margin=3mm]{standalone}
          usetikzlibrary{decorations.pathmorphing,decorations.markings}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[thick,red,zigzag,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (x);
          },
          decorate
          }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
          draw[thick,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (y);
          },
          decorate
          }] (a) -- (c);
          draw[dashed,red,thick] (x)--(y);
          end{tikzpicture}
          end{document}


          enter image description here



          Bonus



          Your entire figure:



          documentclass[tikz,margin=3mm]{standalone}
          usepackage{mathrsfs}
          usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[thick,red,zigzag,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (x);,
          mark=at position 0.5 with coordinate (singularity);
          },
          decorate
          }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
          draw[thick,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (y);
          },
          decorate
          }] (a) -- (c);
          draw[dashed,red,thick] (x)--(y);
          node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
          draw[red,->] (es)--($(y)+(-.1,-.1)$);
          node[above=10ex of singularity,red] (sn) {singularity};
          draw[red,->] (sn)--($(singularity)+(0,1)$);
          node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
          path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
          path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
          path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
          node[right=0pt of d] {$i^0$};
          draw[postaction={
          decoration={
          markings,
          mark=at position 0.15 with coordinate (enblue);
          },
          decorate
          },thick,blue] (d) to[out=-150,in=-30] (c);
          draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
          path[postaction={
          decoration={
          markings,
          mark=at position 0.35 with coordinate (engren);
          },
          decorate
          }] (c)--(b);
          draw[thick,green!50!black,postaction={
          decoration={
          markings,
          mark=at position 0.6 with coordinate (enargr);
          },
          decorate
          }] (d) to[out=180,in=-30] (engren);
          draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
          draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer


























          • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            3 hours ago











          • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            3 hours ago











          • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            3 hours ago











          • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            3 hours ago











          • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            3 hours ago



















          3














          It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



          To draw a dashed parallel, I used the calc library.



          The principle.
          I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



          I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



          I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



          documentclass[tikz,border=5mm]{standalone}

          %usepackage{xcolor}
          usetikzlibrary{decorations.pathmorphing}
          usetikzlibrary{intersections}
          usetikzlibrary{calc}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw[thick,name path=ac] (a) -- (c);
          path[name path=trans] (.9,0.08) -- (0,-0.8);
          coordinate [name intersections={of= zz and trans,by={i}}];
          coordinate (j) at ($(i)+(c)-(b)$);
          coordinate(k) at ($(i)+(b)-(c)$);
          path[name path=dash](j)--(k);
          path[name intersections={of= ac and dash,by={l}}];
          draw [thick,red,dashed] (i) -- (l);
          end{tikzpicture}
          end{document}


          screenshot






          share|improve this answer


























          • the line isn't at the exact location like in the picture

            – subham soni
            5 hours ago











          • I just corrected that, is that okay with you?

            – AndréC
            4 hours ago











          • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            3 hours ago











          • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

            – AndréC
            2 hours ago





















          2














          You can easily calculate where a point in the middle between two other points lies:



          documentclass{article}
          usepackage{tikz}
          usepackage{xcolor}
          usetikzlibrary{decorations.pathmorphing,calc}
          tikzset{
          zigzag/.style={
          decorate,
          decoration={
          zigzag,
          amplitude=2.5pt,
          segment length=2.5mm
          }
          }
          }
          begin{document}
          defposition{0.6}
          begin{tikzpicture}[thick]
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw (a) -- (c);
          draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer























            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "85"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476907%2fhow-do-i-draw-the-dashed-lines-as-shown-in-this-figure%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4














            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer


























            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              3 hours ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              3 hours ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              3 hours ago
















            4














            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer


























            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              3 hours ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              3 hours ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              3 hours ago














            4












            4








            4







            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer















            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 4 hours ago

























            answered 5 hours ago









            JouleVJouleV

            4,2801938




            4,2801938













            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              3 hours ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              3 hours ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              3 hours ago



















            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              3 hours ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              3 hours ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              3 hours ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              3 hours ago

















            Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            3 hours ago





            Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            3 hours ago













            Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            3 hours ago





            Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            3 hours ago













            @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            3 hours ago





            @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            3 hours ago













            Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            3 hours ago





            Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            3 hours ago













            @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            3 hours ago





            @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            3 hours ago











            3














            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer


























            • the line isn't at the exact location like in the picture

              – subham soni
              5 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              4 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              3 hours ago











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              2 hours ago


















            3














            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer


























            • the line isn't at the exact location like in the picture

              – subham soni
              5 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              4 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              3 hours ago











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              2 hours ago
















            3












            3








            3







            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer















            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 2 hours ago

























            answered 5 hours ago









            AndréCAndréC

            9,43111447




            9,43111447













            • the line isn't at the exact location like in the picture

              – subham soni
              5 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              4 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              3 hours ago











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              2 hours ago





















            • the line isn't at the exact location like in the picture

              – subham soni
              5 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              4 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              3 hours ago











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              2 hours ago



















            the line isn't at the exact location like in the picture

            – subham soni
            5 hours ago





            the line isn't at the exact location like in the picture

            – subham soni
            5 hours ago













            I just corrected that, is that okay with you?

            – AndréC
            4 hours ago





            I just corrected that, is that okay with you?

            – AndréC
            4 hours ago













            can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            3 hours ago





            can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            3 hours ago













            I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

            – AndréC
            2 hours ago







            I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

            – AndréC
            2 hours ago













            2














            You can easily calculate where a point in the middle between two other points lies:



            documentclass{article}
            usepackage{tikz}
            usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing,calc}
            tikzset{
            zigzag/.style={
            decorate,
            decoration={
            zigzag,
            amplitude=2.5pt,
            segment length=2.5mm
            }
            }
            }
            begin{document}
            defposition{0.6}
            begin{tikzpicture}[thick]
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw (a) -- (c);
            draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer




























              2














              You can easily calculate where a point in the middle between two other points lies:



              documentclass{article}
              usepackage{tikz}
              usepackage{xcolor}
              usetikzlibrary{decorations.pathmorphing,calc}
              tikzset{
              zigzag/.style={
              decorate,
              decoration={
              zigzag,
              amplitude=2.5pt,
              segment length=2.5mm
              }
              }
              }
              begin{document}
              defposition{0.6}
              begin{tikzpicture}[thick]
              coordinate (c) at (0,-2);
              coordinate (d) at (4,-2);
              coordinate (e) at (2,-4);
              draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
              draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
              draw (a) -- (c);
              draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer


























                2












                2








                2







                You can easily calculate where a point in the middle between two other points lies:



                documentclass{article}
                usepackage{tikz}
                usepackage{xcolor}
                usetikzlibrary{decorations.pathmorphing,calc}
                tikzset{
                zigzag/.style={
                decorate,
                decoration={
                zigzag,
                amplitude=2.5pt,
                segment length=2.5mm
                }
                }
                }
                begin{document}
                defposition{0.6}
                begin{tikzpicture}[thick]
                coordinate (c) at (0,-2);
                coordinate (d) at (4,-2);
                coordinate (e) at (2,-4);
                draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
                draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
                draw (a) -- (c);
                draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer













                You can easily calculate where a point in the middle between two other points lies:



                documentclass{article}
                usepackage{tikz}
                usepackage{xcolor}
                usetikzlibrary{decorations.pathmorphing,calc}
                tikzset{
                zigzag/.style={
                decorate,
                decoration={
                zigzag,
                amplitude=2.5pt,
                segment length=2.5mm
                }
                }
                }
                begin{document}
                defposition{0.6}
                begin{tikzpicture}[thick]
                coordinate (c) at (0,-2);
                coordinate (d) at (4,-2);
                coordinate (e) at (2,-4);
                draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
                draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
                draw (a) -- (c);
                draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
                end{tikzpicture}
                end{document}


                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 4 hours ago









                BubayaBubaya

                635310




                635310






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476907%2fhow-do-i-draw-the-dashed-lines-as-shown-in-this-figure%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Benedict Cumberbatch Contingut Inicis Debut professional Premis Filmografia bàsica Premis i...

                    Monticle de plataforma Contingut Est de Nord Amèrica Interpretacions Altres cultures Vegeu...

                    Escacs Janus Enllaços externs Menú de navegacióEscacs JanusJanusschachBrainKing.comChessV