Solving Fredholm Equation of the second kindHow to solve a non-linear integral equation?Solving homogeneous...

Would these multi-classing house rules cause unintended problems?

Difference between two quite-similar Terminal commands

Explain the objections to these measures against human trafficking

Checking for the existence of multiple directories

Is there any differences between "Gucken" and "Schauen"?

Why doesn't "auto ch = unsigned char{'p'}" compile under C++ 17?

Solubility of a tribasic weak acid

How to tag distinct options/entities without giving any an implicit priority or suggested order?

What was the earliest start time of a Catholic mass before 1957?

Pre-1980's science fiction short story: alien disguised as a woman shot by a gangster, has tentacles coming out of her breasts when remaking her body

Can you combine War Caster, whip, and Warlock Features to Eldritch Blast enemies with reach?

If I delete my router's history can my ISP still provide it to my parents?

Why does lambda auto& parameter choose const overload?

Slow moving projectiles from a hand-held weapon - how do they reach the target?

How do I say "Brexit" in Latin?

What is the wife of a henpecked husband called?

Citing paywalled articles accessed via illegal web sharing

It took me a lot of time to make this, pls like. (YouTube Comments #1)

Eww, those bytes are gross

Magento 2 : Call Helper Without Using __construct in Own Module

What's a good word to describe a public place that looks like it wouldn't be rough?

Isn't using the Extrusion Multiplier like cheating?

Why did other German political parties disband so fast when Hitler was appointed chancellor?

Why would the Pakistan airspace closure cancel flights not headed to Pakistan itself?



Solving Fredholm Equation of the second kind


How to solve a non-linear integral equation?Solving homogeneous Fredholm Equation of the second kindNon-linear integral equationFredholm integral equation of the second kind with kernel containing Bessel and Struve functionsSolving Fredholm Equation of the first kindNumerical solution of singular non-linear integral equationRecursive Function Numerical IntegrationSolving an equation with no analytical form (NIntegrate)Fredholm Integral Equation of the 2nd Kind with a Singular Difference KernelNumerical Integration with Inequality Condition













2












$begingroup$


Consider the Fredholm Equation of the second kind,



$$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$



Where the analytical solution is found as,



$$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$



How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?










share|improve this question









$endgroup$

















    2












    $begingroup$


    Consider the Fredholm Equation of the second kind,



    $$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$



    Where the analytical solution is found as,



    $$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$



    How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?










    share|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Consider the Fredholm Equation of the second kind,



      $$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$



      Where the analytical solution is found as,



      $$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$



      How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?










      share|improve this question









      $endgroup$




      Consider the Fredholm Equation of the second kind,



      $$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$



      Where the analytical solution is found as,



      $$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$



      How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?







      numerical-integration integral-equations numerical-value






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 1 hour ago









      user57401user57401

      534




      534






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Use DSolve



          PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
          (*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)


          The solution can be further used in the form PHI[x].






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
            $endgroup$
            – user57401
            1 hour ago






          • 1




            $begingroup$
            @ user57401 I modified my answer!
            $endgroup$
            – Ulrich Neumann
            1 hour ago



















          1












          $begingroup$

          Following
          Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:



          n = 10; (* for example *)
          [Phi][x_, 0] = 3;
          Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]


          The last term in the series [Phi][x,n] is the approximation to [Phi][x].



          Here is what Mathematica returns for [Phi][x,10].



          phi_of_ten



          To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x] as n gets large, since you know [Phi][x].






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
            $endgroup$
            – user57401
            53 mins ago










          • $begingroup$
            Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
            $endgroup$
            – mjw
            28 mins ago












          • $begingroup$
            Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
            $endgroup$
            – mjw
            24 mins ago













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192434%2fsolving-fredholm-equation-of-the-second-kind%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Use DSolve



          PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
          (*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)


          The solution can be further used in the form PHI[x].






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
            $endgroup$
            – user57401
            1 hour ago






          • 1




            $begingroup$
            @ user57401 I modified my answer!
            $endgroup$
            – Ulrich Neumann
            1 hour ago
















          3












          $begingroup$

          Use DSolve



          PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
          (*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)


          The solution can be further used in the form PHI[x].






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
            $endgroup$
            – user57401
            1 hour ago






          • 1




            $begingroup$
            @ user57401 I modified my answer!
            $endgroup$
            – Ulrich Neumann
            1 hour ago














          3












          3








          3





          $begingroup$

          Use DSolve



          PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
          (*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)


          The solution can be further used in the form PHI[x].






          share|improve this answer











          $endgroup$



          Use DSolve



          PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
          (*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)


          The solution can be further used in the form PHI[x].







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          Ulrich NeumannUlrich Neumann

          9,261516




          9,261516












          • $begingroup$
            Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
            $endgroup$
            – user57401
            1 hour ago






          • 1




            $begingroup$
            @ user57401 I modified my answer!
            $endgroup$
            – Ulrich Neumann
            1 hour ago


















          • $begingroup$
            Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
            $endgroup$
            – user57401
            1 hour ago






          • 1




            $begingroup$
            @ user57401 I modified my answer!
            $endgroup$
            – Ulrich Neumann
            1 hour ago
















          $begingroup$
          Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
          $endgroup$
          – user57401
          1 hour ago




          $begingroup$
          Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
          $endgroup$
          – user57401
          1 hour ago




          1




          1




          $begingroup$
          @ user57401 I modified my answer!
          $endgroup$
          – Ulrich Neumann
          1 hour ago




          $begingroup$
          @ user57401 I modified my answer!
          $endgroup$
          – Ulrich Neumann
          1 hour ago











          1












          $begingroup$

          Following
          Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:



          n = 10; (* for example *)
          [Phi][x_, 0] = 3;
          Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]


          The last term in the series [Phi][x,n] is the approximation to [Phi][x].



          Here is what Mathematica returns for [Phi][x,10].



          phi_of_ten



          To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x] as n gets large, since you know [Phi][x].






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
            $endgroup$
            – user57401
            53 mins ago










          • $begingroup$
            Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
            $endgroup$
            – mjw
            28 mins ago












          • $begingroup$
            Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
            $endgroup$
            – mjw
            24 mins ago


















          1












          $begingroup$

          Following
          Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:



          n = 10; (* for example *)
          [Phi][x_, 0] = 3;
          Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]


          The last term in the series [Phi][x,n] is the approximation to [Phi][x].



          Here is what Mathematica returns for [Phi][x,10].



          phi_of_ten



          To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x] as n gets large, since you know [Phi][x].






          share|improve this answer











          $endgroup$













          • $begingroup$
            Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
            $endgroup$
            – user57401
            53 mins ago










          • $begingroup$
            Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
            $endgroup$
            – mjw
            28 mins ago












          • $begingroup$
            Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
            $endgroup$
            – mjw
            24 mins ago
















          1












          1








          1





          $begingroup$

          Following
          Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:



          n = 10; (* for example *)
          [Phi][x_, 0] = 3;
          Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]


          The last term in the series [Phi][x,n] is the approximation to [Phi][x].



          Here is what Mathematica returns for [Phi][x,10].



          phi_of_ten



          To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x] as n gets large, since you know [Phi][x].






          share|improve this answer











          $endgroup$



          Following
          Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:



          n = 10; (* for example *)
          [Phi][x_, 0] = 3;
          Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]


          The last term in the series [Phi][x,n] is the approximation to [Phi][x].



          Here is what Mathematica returns for [Phi][x,10].



          phi_of_ten



          To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x] as n gets large, since you know [Phi][x].







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 26 mins ago

























          answered 1 hour ago









          mjwmjw

          3116




          3116












          • $begingroup$
            Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
            $endgroup$
            – user57401
            53 mins ago










          • $begingroup$
            Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
            $endgroup$
            – mjw
            28 mins ago












          • $begingroup$
            Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
            $endgroup$
            – mjw
            24 mins ago




















          • $begingroup$
            Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
            $endgroup$
            – user57401
            53 mins ago










          • $begingroup$
            Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
            $endgroup$
            – mjw
            28 mins ago












          • $begingroup$
            Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
            $endgroup$
            – mjw
            24 mins ago


















          $begingroup$
          Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
          $endgroup$
          – user57401
          53 mins ago




          $begingroup$
          Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
          $endgroup$
          – user57401
          53 mins ago












          $begingroup$
          Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
          $endgroup$
          – mjw
          28 mins ago






          $begingroup$
          Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value: [Phi][x, n].
          $endgroup$
          – mjw
          28 mins ago














          $begingroup$
          Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
          $endgroup$
          – mjw
          24 mins ago






          $begingroup$
          Made some edits to my answer. Had a couple of typos. Within a function definition it is x_, otherwise x. Also, [Phi][x,j] needs two arguments, one for x and one for the jth approximation. Hope its clear.
          $endgroup$
          – mjw
          24 mins ago




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192434%2fsolving-fredholm-equation-of-the-second-kind%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Benedict Cumberbatch Contingut Inicis Debut professional Premis Filmografia bàsica Premis i...

          Monticle de plataforma Contingut Est de Nord Amèrica Interpretacions Altres cultures Vegeu...

          Escacs Janus Enllaços externs Menú de navegacióEscacs JanusJanusschachBrainKing.comChessV