Solving Fredholm Equation of the second kindHow to solve a non-linear integral equation?Solving homogeneous...
Would these multi-classing house rules cause unintended problems?
Difference between two quite-similar Terminal commands
Explain the objections to these measures against human trafficking
Checking for the existence of multiple directories
Is there any differences between "Gucken" and "Schauen"?
Why doesn't "auto ch = unsigned char{'p'}" compile under C++ 17?
Solubility of a tribasic weak acid
How to tag distinct options/entities without giving any an implicit priority or suggested order?
What was the earliest start time of a Catholic mass before 1957?
Pre-1980's science fiction short story: alien disguised as a woman shot by a gangster, has tentacles coming out of her breasts when remaking her body
Can you combine War Caster, whip, and Warlock Features to Eldritch Blast enemies with reach?
If I delete my router's history can my ISP still provide it to my parents?
Why does lambda auto& parameter choose const overload?
Slow moving projectiles from a hand-held weapon - how do they reach the target?
How do I say "Brexit" in Latin?
What is the wife of a henpecked husband called?
Citing paywalled articles accessed via illegal web sharing
It took me a lot of time to make this, pls like. (YouTube Comments #1)
Eww, those bytes are gross
Magento 2 : Call Helper Without Using __construct in Own Module
What's a good word to describe a public place that looks like it wouldn't be rough?
Isn't using the Extrusion Multiplier like cheating?
Why did other German political parties disband so fast when Hitler was appointed chancellor?
Why would the Pakistan airspace closure cancel flights not headed to Pakistan itself?
Solving Fredholm Equation of the second kind
How to solve a non-linear integral equation?Solving homogeneous Fredholm Equation of the second kindNon-linear integral equationFredholm integral equation of the second kind with kernel containing Bessel and Struve functionsSolving Fredholm Equation of the first kindNumerical solution of singular non-linear integral equationRecursive Function Numerical IntegrationSolving an equation with no analytical form (NIntegrate)Fredholm Integral Equation of the 2nd Kind with a Singular Difference KernelNumerical Integration with Inequality Condition
$begingroup$
Consider the Fredholm Equation of the second kind,
$$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$
Where the analytical solution is found as,
$$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$
How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?
numerical-integration integral-equations numerical-value
$endgroup$
add a comment |
$begingroup$
Consider the Fredholm Equation of the second kind,
$$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$
Where the analytical solution is found as,
$$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$
How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?
numerical-integration integral-equations numerical-value
$endgroup$
add a comment |
$begingroup$
Consider the Fredholm Equation of the second kind,
$$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$
Where the analytical solution is found as,
$$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$
How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?
numerical-integration integral-equations numerical-value
$endgroup$
Consider the Fredholm Equation of the second kind,
$$phi(x) = 3 + lambda int_{0}^{pi} text{cos}(x-s) , phi(s) ,ds$$
Where the analytical solution is found as,
$$phi(x) = 3 + frac{6lambda}{1 - lambda frac{pi}{2}},text{sin}(x)$$
How could one use Mathematica to find a numerical solution to the same integral equation by using the method of successive approximations (i.e. the Neumann series approach)?
numerical-integration integral-equations numerical-value
numerical-integration integral-equations numerical-value
asked 1 hour ago
user57401user57401
534
534
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Use DSolve
PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
(*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)
The solution can be further used in the form PHI[x]
.
$endgroup$
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
1
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
add a comment |
$begingroup$
Following
Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:
n = 10; (* for example *)
[Phi][x_, 0] = 3;
Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]
The last term in the series [Phi][x,n]
is the approximation to [Phi][x]
.
Here is what Mathematica returns for [Phi][x,10]
.
To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x]
as n
gets large, since you know [Phi][x]
.
$endgroup$
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:[Phi][x, n]
.
$endgroup$
– mjw
28 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it isx_
, otherwisex
. Also,[Phi][x,j]
needs two arguments, one forx
and one for thejth
approximation. Hope its clear.
$endgroup$
– mjw
24 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192434%2fsolving-fredholm-equation-of-the-second-kind%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use DSolve
PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
(*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)
The solution can be further used in the form PHI[x]
.
$endgroup$
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
1
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
add a comment |
$begingroup$
Use DSolve
PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
(*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)
The solution can be further used in the form PHI[x]
.
$endgroup$
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
1
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
add a comment |
$begingroup$
Use DSolve
PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
(*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)
The solution can be further used in the form PHI[x]
.
$endgroup$
Use DSolve
PHI=DSolveValue[[Phi][x] == 3 + [Lambda] Integrate[ Cos[x - s] [Phi][s], {s, 0, Pi}], [Phi],x]
(*Function[{x}, (3 (-2 + [Pi] [Lambda] - 4 [Lambda] Sin[x]))/(-2 + [Pi] [Lambda])]*)
The solution can be further used in the form PHI[x]
.
edited 1 hour ago
answered 1 hour ago
Ulrich NeumannUlrich Neumann
9,261516
9,261516
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
1
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
add a comment |
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
1
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
$begingroup$
Thank you, but how can I use the function Mathematica returns to, say, investigate the convergence of the new $phi (x)$ function?
$endgroup$
– user57401
1 hour ago
1
1
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
$begingroup$
@ user57401 I modified my answer!
$endgroup$
– Ulrich Neumann
1 hour ago
add a comment |
$begingroup$
Following
Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:
n = 10; (* for example *)
[Phi][x_, 0] = 3;
Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]
The last term in the series [Phi][x,n]
is the approximation to [Phi][x]
.
Here is what Mathematica returns for [Phi][x,10]
.
To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x]
as n
gets large, since you know [Phi][x]
.
$endgroup$
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:[Phi][x, n]
.
$endgroup$
– mjw
28 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it isx_
, otherwisex
. Also,[Phi][x,j]
needs two arguments, one forx
and one for thejth
approximation. Hope its clear.
$endgroup$
– mjw
24 mins ago
add a comment |
$begingroup$
Following
Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:
n = 10; (* for example *)
[Phi][x_, 0] = 3;
Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]
The last term in the series [Phi][x,n]
is the approximation to [Phi][x]
.
Here is what Mathematica returns for [Phi][x,10]
.
To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x]
as n
gets large, since you know [Phi][x]
.
$endgroup$
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:[Phi][x, n]
.
$endgroup$
– mjw
28 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it isx_
, otherwisex
. Also,[Phi][x,j]
needs two arguments, one forx
and one for thejth
approximation. Hope its clear.
$endgroup$
– mjw
24 mins ago
add a comment |
$begingroup$
Following
Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:
n = 10; (* for example *)
[Phi][x_, 0] = 3;
Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]
The last term in the series [Phi][x,n]
is the approximation to [Phi][x]
.
Here is what Mathematica returns for [Phi][x,10]
.
To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x]
as n
gets large, since you know [Phi][x]
.
$endgroup$
Following
Weisstein, Eric W. "Integral Equation Neumann Series." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IntegralEquationNeumannSeries.html, the Neumann series approximation is:
n = 10; (* for example *)
[Phi][x_, 0] = 3;
Do[[Phi][x_, j_] = 3 + [Lambda] Integrate[Cos[x - p] [Phi][p, j - 1], {p, 0, [Pi]}], {j, n}]
The last term in the series [Phi][x,n]
is the approximation to [Phi][x]
.
Here is what Mathematica returns for [Phi][x,10]
.
To investigate convergence, I guess we could look at the difference [Phi][x,n] - [Phi][x]
as n
gets large, since you know [Phi][x]
.
edited 26 mins ago
answered 1 hour ago
mjwmjw
3116
3116
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:[Phi][x, n]
.
$endgroup$
– mjw
28 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it isx_
, otherwisex
. Also,[Phi][x,j]
needs two arguments, one forx
and one for thejth
approximation. Hope its clear.
$endgroup$
– mjw
24 mins ago
add a comment |
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:[Phi][x, n]
.
$endgroup$
– mjw
28 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it isx_
, otherwisex
. Also,[Phi][x,j]
needs two arguments, one forx
and one for thejth
approximation. Hope its clear.
$endgroup$
– mjw
24 mins ago
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Thank you! When I try to run this, my output is returning the value of 3? How did you get Mathematica to return the series above for [Phi][10]?
$endgroup$
– user57401
53 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:
[Phi][x, n]
.$endgroup$
– mjw
28 mins ago
$begingroup$
Please clear out your variables, perhaps with Evaluation: Quit Kernel: Local. To print the final (nth) value:
[Phi][x, n]
.$endgroup$
– mjw
28 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it is
x_
, otherwise x
. Also, [Phi][x,j]
needs two arguments, one for x
and one for the jth
approximation. Hope its clear.$endgroup$
– mjw
24 mins ago
$begingroup$
Made some edits to my answer. Had a couple of typos. Within a function definition it is
x_
, otherwise x
. Also, [Phi][x,j]
needs two arguments, one for x
and one for the jth
approximation. Hope its clear.$endgroup$
– mjw
24 mins ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192434%2fsolving-fredholm-equation-of-the-second-kind%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown